Problem 6
The sum of the squares of the first ten natural numbers is,
The square of the sum of the first ten natural numbers is,
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
Solution in Perl
sub problem6 {
my $sum = 0;
my $sqSum = 0;
for my $i ( 1 .. 100 ) {
$sum += $i;
$sqSum += $i * $i;
}
print $sum * $sum - $sqSum;
}
problem6();
# 2
for (1..100) {$s+=$_; $s2+=$_*$_;}
print $s*$s-$s2;
Python
def problem6():
sumN = 0
sqSum = 0
for i in xrange(1, 101):
sumN += i
sqSum += i * i
print sumN * sumN - sqSum
Go
func problem6(){
sumN := 0
sqSum := 0
for i :=1;i<=100;i++ {
sumN += i
sqSum += i * i
}
fmt.Println(sumN * sumN - sqSum)
}
func main() {
problem6()
}
C++
void problem6() {
auto sumN = 0;
auto sqSum = 0;
for (auto i=1; i<=100; i++) {
sumN += i;
sqSum += i * i;
}
cout << sumN * sumN - sqSum;
}
Bash
function problem6 {
local sum=0
local sqSum=0
for i in {1..100}; do
((sum += i))
((sqSum += i * i))
done
echo $((sum * sum - sqSum))
}
problem6
Javascript
var sumN=0, sqSum=0;
for(var i=1; i<=100; sumN+=i,sqSum+=i*i,i++);
sumN * sumN - sqSum
Racket
(define (problem6)
(define sumN (apply + (range 1 101)))
(define sqSum (apply + (map (lambda (x) (* x x)) (range 1 101))))
(display (- (* sumN sumN) sqSum)))
(problem6)
; using sqr
#lang racket
(define (problem6)
(define r (range 1 101))
(define sumN (apply + r))
(define sqSum (apply + (map sqr r)))
(display (- (sqr sumN) sqSum)))
(problem6)
* Clojure
(defn problem6 []
(def r (range 1 101))
(defn sqr [x] (* x x))
(println (- (sqr (apply + r)) (apply + (map sqr r)))))
* newLISP
(setq r (sequence 1 100))
(define (sqr x) (* x x))
(println (- (sqr (apply + r)) (apply + (map sqr r))))
'Project Euler' 카테고리의 다른 글
Project Euler Problem 8 (0) | 2012.05.28 |
---|---|
Project Euler Problem 7 (0) | 2012.05.28 |
Project Euler Problem 5 (0) | 2012.05.28 |
Project Euler Problem 4 (0) | 2012.05.28 |
Project Euler Problem 211 (0) | 2012.05.28 |