If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the input for the interpreter and running it with that file as input instead. This is known as creating a script. As your program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a handy function that you’ve written in several programs without copying its definition into each program.
To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the interpreter. Such a file is called amodule; definitions from a module can be imported into other modules or into the main module (the collection of variables that you have access to in a script executed at the top level and in calculator mode).
A module is a file containing Python definitions and statements. The file name is the module name with the suffix .py appended. Within a module, the module’s name (as a string) is available as the value of the global variable__name__. For instance, use your favorite text editor to create a file called fibo.py in the current directory with the following contents:
# Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:
print b,
a, b = b, a+b
def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:
result.append(b)
a, b = b, a+b
return result
Now enter the Python interpreter and import this module with the following command:
>>> import fibo
This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the module name fibo there. Using the module name you can access the functions:
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'
If you intend to use a function often you can assign it to a local name:
>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
6.1. More on Modules¶
A module can contain executable statements as well as function definitions. These statements are intended to initialize the module. They are executed only the first time the module is imported somewhere. [1]
Each module has its own private symbol table, which is used as the global symbol table by all functions defined in the module. Thus, the author of a module can use global variables in the module without worrying about accidental clashes with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s global variables with the same notation used to refer to its functions, modname.itemname.
Modules can import other modules. It is customary but not required to place allimport statements at the beginning of a module (or script, for that matter). The imported module names are placed in the importing module’s global symbol table.
There is a variant of the import statement that imports names from a module directly into the importing module’s symbol table. For example:
>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
This does not introduce the module name from which the imports are taken in the local symbol table (so in the example, fibo is not defined).
There is even a variant to import all names that a module defines:
>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
This imports all names except those beginning with an underscore (_).
Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly readable code. However, it is okay to use it to save typing in interactive sessions.
Note
For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your modules, you must restart the interpreter – or, if it’s just one module you want to test interactively, use reload(), e.g. reload(modulename).
'Programming' 카테고리의 다른 글
C# Enumerable.Range (0) | 2012.05.31 |
---|---|
goclipse: Eclipse-based IDE for Google's Go Programming Language (0) | 2012.05.31 |
Python String find() Method (0) | 2012.05.30 |
Efficient String Concatenation in Python (0) | 2012.05.30 |
(Racket) Hash Tables (0) | 2012.05.29 |