Programming

Go generics are not bad – Daniel Lemire's blog

steloflute 2022. 7. 9. 23:18

Go generics are not bad – Daniel Lemire's blog

 

Go generics are not bad

When programming, we often need to write ‘generic’ functions where the exact data type is not important. For example, you might want to write a simple function that sums up numbers. Go lacked this notion until recently, but it was recently added (as of

lemire.me

 

Go generics are not bad

When programming, we often need to write ‘generic’ functions where the exact data type is not important. For example, you might want to write a simple function that sums up numbers.

Go lacked this notion until recently, but it was recently added (as of version 1.18). So I took it out for a spin.

In Java, generics work well enough as long as you need “generic” containers (arrays, maps), and as long as stick with functional idioms. But Java will not let me code the way I would prefer. Here is how I would write a function that sums up numbers:

    int sum(int[] v) {
        int summer = 0;
        for(int k = 0; k < v.length; k++) {
            summer += v[k];
        }
        return summer;
    }

What if I need to support various number types? Then I would like to write the following generic function, but Java won’t let me.

    // this Java code won't compile
    static <T extends Number>  T sum(T[] v) {
        T summer = 0;
        for(int k = 0; k < v.length; k++) {
            summer += v[k];
        }
        return summer;
    }

Go is not object oriented per se, so you do not have a ‘Number’ class. However, you can create your own generic ‘interfaces’ which serves the same function. So here is how you solve the same problem in Go:

type Number interface {
  uint | int | float32 | float64
}


func sum[T Number](a []T) T{
    var summer T
    for _, v := range(a) {
        summer += v
    }
   return summer
}

So, at least in this one instance, Go generics are more expressive than Java generics. What about performance?

If I apply the above code to an array of integers, I get the following tight loop in assembly:

pc11:
        MOVQ    (AX)(DX*8), SI
        INCQ    DX
        ADDQ    SI, CX
        CMPQ    BX, DX
        JGT     pc11

As far as Go is concerned, this is as efficient as it gets.

So far, I am giving an A to Go generics.