Problem 45
06 June 2003
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
Triangle | Tn=n(n+1)/2 | 1, 3, 6, 10, 15, ... | ||
Pentagonal | Pn=n(3n1)/2 | 1, 5, 12, 22, 35, ... | ||
Hexagonal | Hn=n(2n1) | 1, 6, 15, 28, 45, ... |
It can be verified that T285 = P165 = H143 = 40755.
Find the next triangle number that is also pentagonal and hexagonal.
C#
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Numerics; namespace Euler { class Program { static bool isPentagonal(long value) { var index = (Math.Sqrt(24 * value + 1) + 1) / 6; return index == Math.Floor(index); } static void Main(string[] args) { for (var i = 144;;i++) { var h = i * (2 * i - 1); // Every hexagonal number is a triangular number. if (isPentagonal(h)) { Console.WriteLine(h); break; } } } } }
'Project Euler' 카테고리의 다른 글
Project Euler Problem 47 (0) | 2012.06.09 |
---|---|
Project Euler Problem 46 (0) | 2012.06.09 |
Project Euler Problem 44 (0) | 2012.06.09 |
Project Euler Problem 43 (0) | 2012.06.09 |
Project Euler Problem 42 (0) | 2012.06.09 |